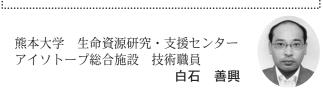
平gg 第15回 肥後医育振興会医学研究助成金受賞者紹介

★☆★☆



☆★☆★☆★☆★☆★☆

放射線免疫療法モデルマウスの開発に関する研究

熊本大学 生命資源研究・支援センター アイソトープ総合施設 技術職員

この度は名誉ある肥後医育助成金を賜り、誠にあり がとうございました。

私は現在、アイソトープ総合施設で技術職員として、 放射線管理の傍ら放射線治療に関する研究をしていま す。今、興味があるのはアイソトープを使った抗体療 法の研究です。抗体療法の最大の利点はがん細胞に抗 体が選択的に取り込まれるため、最小限の放射線でが ん細胞を死滅させることができます。一方で、正常な 細胞へのダメージは最小限に抑えることができるため、 理想的な治療法としても注目されています。

今回の研究では、この治療のためのモデルマウスを 確立することで、これにより様々なモノクローナル抗 体やRI核種を用いた前臨床試験を行うことが可能とな るため、より安全な薬剤の開発につながればと考えて います。

また、これからも受賞させて頂いた研究助成金に恥 じぬよう、研究活動と放射線施設の管理を両立させて 頑張っていきたいと考えています。

最後に選んでいただいた審査員の先生方と、推薦し て頂いた古嶋准教授に感謝の意を表したいと思います。

海洋メタゲノムからの医薬品資源として有望な物質 の生合成遺伝子の探索と生物工学的な生産

熊本大学大学院先導機構(創薬科学分野) テニュアトラック助教

藤田 雅紀

この度は肥後医育振興会医学研究助成 金を賜りまことに有難うございます。関係者の皆様に 厚く御礼申し上げます。

我々は環境中に存在する微生物を分離培養する事無 く、直接全ゲノムDNAを抽出し解析・利用するメタ ゲノム法を創薬へ応用する研究を行っております。環 境中微生物の99%以上は人工環境での培養が困難であ り、有効利用されていません。しかしメタゲノム法を 適用する事で原理的には地球上に存在する全ての生物 の遺伝子資源が利用可能になります。医薬品の約6割 は天然化合物に由来しますが、膨大な未利用遺伝子資 源を活用する事で、さらに多くの有用化合物が得られ ると期待されています。

我々は特に培養困難かつ多様な生物が生息する海洋 環境を対象にメタゲノム研究を進めており、これまで に30万クローンを超えるメタゲノムライブラリを構築 し、また医薬品として有望な物質の生産を確認してお ります。

今後は本助成金を励みに、メタゲノム法の医科学へ の応用をますます進めて行きたいと思います。また本 助成への申請にあたり快く推薦人をお引き受けいただ いた熊本大学生命科学研究部大塚雅巳教授に心から感 謝いたします。

∷消化管癌の抗癌剤感受性を規定する 新規血清exosome中microRNAの同定

熊本大学大学院生命科学研究部 消化器外科学分野 助教 岩槻 政晃

この度は肥後医育振興会医学研究助成金を賜り、誠 にありがとうございます。選考にあたられた諸先生方、 またご推薦いただいた消化器外科学 馬場秀夫教授に この場をお借りして厚く御礼申し上げます。

私は現在、消化器外科診療とともに消化管癌の微量 癌細胞研究を行っております。消化器癌において根治 術後や補助化学療法後の再発や転移は、癌の難治性の 一因であり、臨床的に非常に多く経験します。これは 末梢血・骨髄中に微量癌細胞が存在することが示唆さ れます。微量癌細胞を検出することで、予後予測や治 療効果判定のマーカーとして臨床応用が期待できます。 現在、新たな遺伝子発現制御機構としてmicroRNAが 注目されています。複数の遺伝子制御に関与するため、 抗癌剤感受性を規定する新たなメカニズムの解明が期 待でき、血清を用いることで腫瘍マーカーとしての臨 床応用も期待できると考えます。

今回の受賞を機に一つでも多くの研究成果を熊本か ら世界へ発信できるように努力したいと思います。

マウス蝸牛におけるTsukushiの発現について

熊本大学医学部附属病院 耳鼻咽喉科・頭頸部外科

医員 林田 桃子

この度は肥後医育振興会医学研究助成金を賜り、誠 にありがとうございました。また、関係者の皆様方に は心より厚く御礼申し上げます。

加齢、騒音等の様々な原因により内耳有毛細胞やラ セン神経節細胞が傷害を受けることによって感音難聴 は生じます。特に哺乳類においては、高度に傷害を受 けたこれらの細胞が再生することはなく、生じた難聴 は不可逆的であると言われております。このため、耳 科学臨床の場では内耳有毛細胞やラセン神経節細胞の 再生が大きな課題となっており、まずは、これらの細 胞の発生のメカニズムを解明することが求められてお ります。

今回のテーマであるTsukushiは、眼の形態形成に重 要な役割を持つタンパクであることが既に報告されて おり、我々の研究では、内耳においても、発生の段階 で有毛細胞やラセン神経節細胞にTsukushiが発現して いることが明らかになっております。今後、この Tsukushiの研究により、内耳の発生のメカニズムに少 しでも光明が射すよう、今回の受賞を励みに日々邁進 していきたいと思います。